
A Systematic Approach for Interfacing
Component-Based Software

with an Active Automata Learning Tool

Dennis Hendriks1,2(B) and Kousar Aslam3

1 ESI (TNO), Eindhoven, The Netherlands
dennis.hendriks@tno.nl

2 Radboud University, Nijmegen, The Netherlands
dennis.hendriks@ru.nl

3 Vrije Universiteit, Amsterdam, The Netherlands
k.aslam@vu.nl

Abstract. Applying Model-Driven Engineering can improve develop-
ment efficiency. But gaining such benefits for legacy software requires
models, and creating them manually is both laborious and error prone.
Active automata learning has the potential to make it cost-effective, but
practitioners face practical challenges applying it to software components
of industrial cyber-physical systems. To overcome these challenges, we
present a framework to learn the behavior of component-based software
with a client/server architecture, focusing on interfacing isolated compo-
nent code with an active learning tool. An essential part of the framework
is an interfacing protocol that provides a structured way of handling the
(a)synchronous communications between the component and learning
tool. Our main contribution is the systematic derivation of such inter-
facing protocols for component-based software, which we demonstrate
on the software architecture of ASML, a leading company in developing
lithography machines. Through several practical case studies we show
that our semi-automatic approach enables setting up a learning environ-
ment to learn component behaviors within hours. The protocol’s respon-
sibilities and the way it handles different communication types apply
to component-based software in general. Our framework could thus be
adapted for companies with similar software architectures.

Keywords: Active automata learning · Component-based systems ·
Industrial application

D. Hendriks—This research is carried out as part of the Transposition project under
the responsibility of ESI (TNO) in co-operation with ASML. The research activities
are supported by the Netherlands Ministry of Economic Affairs and TKI-HTSM.
K. Aslam—This research was supported by the Eindhoven University of Technology
and ASML Netherlands B.V., carried out as part of the IMPULS II project.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13702, pp. 216–236, 2022.
https://doi.org/10.1007/978-3-031-19756-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19756-7_13&domain=pdf
https://doi.org/10.1007/978-3-031-19756-7_13

A Systematic Approach for Interfacing Component-Based Software 217

1 Introduction

Cyber-physical systems often employ a component-based software architecture,
dividing the system into components that can be developed, tested and deployed
independently [17]. Model-Driven Engineering (MDE) places models at the cen-
ter of attention, allowing for early analysis of a component’s software behavior
and for implementations to be automatically generated [18]. But gaining such
benefits for legacy software requires models, and manual modeling for legacy
components is often laborious and error prone due to a lack of understanding
of their current behavior, for instance caused by insufficient documentation and
the original developers having long since left the company.

To facilitate a cost-effective transition to MDE, model learning can automat-
ically infer first-order models to bootstrap a subsequent manual modeling effort.
Passive state machine learning for instance infers models based on execution
logs [9,10], but the resulting models are often incomplete due to logs covering
only parts of the component’s behavior. Active automata learning (AAL) on the
other hand repeatedly queries the component to ultimately infer a model captur-
ing the component’s complete behavior. AAL was introduced in Dana Angluin’s
seminal work on the L* algorithm [2]. A comprehensive body of work extended
upon this to, e.g., learn different types of models, improve scalability, and show
its practical value [12].

However, practitioners face practical challenges applying AAL to software
components of real-world industrial cyber-physical systems. In order for an AAL
tool to send queries to a component and gauge its responses, the component must
be isolated from its environment and subsequently connected to the learning
tool. Existing case studies typically explicitly or implicitly explain their learn-
ing setup [5,6,16]. But, establishing such a learning setup is laborious. It can
therefore pay off to use a generic setup that can be (re)configured for reuse. By
analyzing existing interface descriptions the new configuration can even be auto-
matically generated. This has been shown to be effective for web services [15].

But what is lacking is a systematic approach to connect software components
operating under the client/server paradigm to a learning tool. Therefore, similar
to what is already available for web services, we contribute a general, reusable
and configurable framework, to quickly produce an AAL setup, specifically for
component-based software with a client/server architecture. Through multiple
case studies we show that our semi-automatic approach enables setting up a
learning environment to learn (sub-)component behaviors within hours.

A particular challenge when interfacing with such components, is how to
deal with their various types of (a)synchronous communications, especially when
considering their dual roles as servers to their clients and as clients to their
servers. For instance, a reply from a server is an input to the component, but
it is only possible after a request from the component itself. Components may
thus not be input-enabled, a practical requirement of various AAL algorithms.

If a component is not input-enabled, a learning purpose [1] can be placed
between the learner and the component. A learning purpose is essentially a pro-
tocol model, which rejects inputs not allowed by the protocol, and forwards any

218 D. Hendriks and K. Aslam

other inputs to the component, to learn the subset of a component’s behavior
satisfying the protocol. Therefore, an essential part of our framework is an inter-
facing protocol model, a learning purpose that provides a practical but structured
way of handling the communications between the AAL tool and the component
whose behavior is to be learned. This way, the System Under Learning (SUL),
the isolated component code combined with the protocol, is input-enabled, pro-
vides a single output per input, and represents a finite Mealy machine, even if
the isolated component code does not satisfy these properties.

Our main contribution is the systematic derivation of the interfacing pro-
tocol. As an example, we derive such a protocol for the software architecture
of ASML, a leading company in developing lithography systems. However, the
responsibilities of the interfacing protocol and the way we handle the different
types of communication patterns apply to component-based software in general.
Our work could therefore be used to similarly derive interfacing protocols and set
up learning frameworks at other companies with similar software architectures.

The remainder of this paper is organized as follows. In Sect. 2 we briefly
introduce component-based software architectures and AAL. Section 3 describes
our general AAL framework. Section 4 contains our main contribution, as it
introduces interfacing protocols and their responsibilities, and describes the sys-
tematic derivation of such a protocol for ASML’s software architecture. We then
apply our approach in practice to infer behavioral models of several software
components in Sect. 5, before concluding in Sect. 6.

2 Background

Component-based software architectures are often employed by cyber-physical
systems to divide the system into components that can be developed, tested and
deployed independently [17]. A component can act as a server offering its func-
tionality via interfaces to other components, its clients. Components may inter-
act with multiple other components, its environment, acting as either client or
server to the various components. Interactions typically involve calling functions
from interfaces of other components, e.g., as remote procedure calls. Concur-
rent components can communicate synchronously and asynchronously [8]. With
synchronous communication a client remains idle while awaiting the server’s
response, while asynchronous communication allows a client to perform other
interactions while a server is processing the client’s request.

Active automata learning (AAL) involves repeatedly querying a component
to ultimately infer a model that captures the component’s complete behavior.
Given our context of component-based software, queries involve function calls.
As for instance function calls from clients are naturally inputs, and their corre-
sponding return values are then outputs, we infer Mealy machine models. AAL
then involves a learner using membership queries (MQs), sending sequences of
inputs (matching, e.g., function calls from clients) to the System Under Learning
(SUL) and observing the outputs (e.g., function return values), using them to
construct a hypothesis model for the SUL’s unknown behavior. An equivalence

A Systematic Approach for Interfacing Component-Based Software 219

AAL

Main

Learner EO

Cache

I/O

MQs TQs

Qs

SUL
Manager

I/O

input/
reset

output

SUL

I/O
Client

Dispatcher
Client
Stub

Idle
Dispatcher

Component
Code (CC)

Server
Dispatcher

Server
Stub

P

P

M

P

M

P

M

P

M

input

output

Legend:
OS process

Reusable code
(configurable)

Generated code
(based on IDL)

Original code

Socket I/O (one way)

Function call (with its re-
turn in opposite direction)

P
Interfacing
protocol

M Mapper

Fig. 1. General framework to perform AAL on software components operating under
the client/server paradigm.

oracle (EO) then either confirms that the hypothesis matches the SUL’s behav-
ior or it produces a counterexample. The EO is typically implemented using
conformance testing techniques, using test queries (TQs) to find differences in
behavior between the hypothesis and the SUL. Iteratively, the learner uses the
counterexample and further membership queries to refine its hypothesis, and the
EO checks this refined hypothesis, until the EO considers a hypothesis correct.
See also the left part of Fig. 1.

3 Active Automata Learning Framework

Complex cyber-physical systems may consist of millions of lines of code, spread
out over many hundreds of components. Our goal is to infer the externally visi-
ble behavior of individual (sub-)components, e.g., to allow replacing the legacy
implementation of their business logic. This requires that a component whose
behavior is to be learned is isolated from its environment and is subsequently
connected to the AAL tool. We assume single-threaded components. Figure 1
shows our general framework to perform AAL on software components operat-
ing under the client/server paradigm. The outermost boxes represent processes.

At the left is the AAL process. It consists of a Main function that configures
a Learner and EO, and subsequently iteratively invokes them as described in
Sect. 2. The Learner and EO produce MQs and TQs, respectively, which are
handled identically by a Cache. The Cache caches and directly answers previ-
ously asked queries. For new queries, the I/O module sends the input symbols
to a SUL Manager process via sockets, and similarly receives output symbols.

The I/O module of the AAL process sends after each MQ/TQ a reset symbol
to the SUL Manager, informing it of query completion. The SUL Manager uses

220 D. Hendriks and K. Aslam

a new SUL instance for every query to ensure that the SUL executes inputs
from the same initial state. It manages a pool of SUL instances and concurrently
processes MQs/TQs and spawns new SUL instances for better performance. The
SUL Manager thus forwards inputs from the AAL process to a SUL instance,
and outputs in the reverse direction. Using multiple processes allows a SUL to
be implemented in a different programming language than the AAL process and
eases spawning of new SUL instances and killing obsolete ones.

At the core of the SUL is the Component Code (CC) whose behavior is to be
inferred. As part of introducing MDE, this code is to be replaced by code gener-
ated from models. The wrapper code that handles inter-process communications
to other components via middleware, dealing with serialization and such, is not
considered part of CC, as it will remain in place also for the newly generated
code. Instead, only the code that implements the component’s functionality is
used. Dispatchers and stubs replace the wrapper code, similar to how code is
isolated in the field of automated software testing.

When the I/O module receives an input, it forwards the input to the Idle
Dispatcher, if the SUL is idle. A component can be both a server to its clients
and a client to its servers. The Idle Dispatcher forwards inputs to the Server
Dispatcher if the CC (and thus the SUL) acts as server for requests from clients,
or to the Client Dispatcher if it acts as client to responses from servers, e.g., due
to earlier asynchronous requests to servers. These Client/Server Dispatchers act
as mappers [15] translating input symbols provided as strings to function calls
on the CC. Once a function returns, its return value is mapped back to an
output (string), which via the Idle Dispatcher and I/O module is provided back
to the SUL Manager and AAL processes. When the CC communicates as a
client to one of its servers, the call is intercepted in the Client Stub. This is
also a mapper, forwarding the output symbol corresponding to the call to the
I/O module. Upon receiving the server reply as input from the I/O module, the
Client Stub translates this server reply to a return value to be returned back to
the CC. Finally, the Server Stub similarly intercepts and handles calls from the
CC (acting as server) to the client. In our work, the mappers do not apply any
abstractions to the input alphabet.

The final aspect of our framework, the interfacing protocol, as implemented
in the dispatchers and stubs, is further explained in Sect. 4. The various shades
of gray used to color the boxes of Fig. 1 are explained in Sect. 5.

4 Interfacing Protocol

In this section, we discuss interfacing protocols and their systematic derivation,
using the software architecture of ASML as an example. After briefly explaining
the company’s software architecture, we describe its communication patterns,
and how they map to AAL inputs and outputs, before introducing the interfacing
protocol and its responsibilities, and systematically deriving such a protocol from
the patterns and the input/output mapping.

A Systematic Approach for Interfacing Component-Based Software 221

4.1 Software Architecture and Communication Patterns

The components interact through remote function calls. A call from a client is,
by the middleware, placed in the server’s message queue. A server is idle while
awaiting incoming messages in its main function’s message processing loop. As
long as the queue is non-empty, it picks up messages from the queue and processes
them one by one, non-preemptively.

Components communicate with each other using various communication pat-
terns. Clients can invoke functions of their servers in three ways: as blocking calls,
request/wait calls, and function completion notification (FCN) calls. Servers can
handle these request either synchronously or asynchronously. The middleware
transparently hides these details, as clients are not aware of how servers handle
their calls, nor are servers aware of how clients invoke the calls. We ignore library
calls, which for the purpose of this work are identical to synchronously-handled
blocking calls. The last two patterns are ‘fire-and-forget’ type of communications:
triggers and events, which give no assurances of (successful) function execution,
e.g., a call may fail without notifying the caller. Next, we describe the 7 pat-
terns (3 client requests, 2 server handlers, 2 fire/forget) in more detail using the
Message Sequence Charts (MSCs) from Fig. 2.

Here f denotes any function, t any trigger and e any event. Collectively,
these three are called methods. A method is assumed to include the identity of
the server that provides it, distinguishing methods from interfaces provided by
multiple servers. The company uses a proprietary Interface Description Language
(IDL) to define interfaces and their methods. A generator generates, from IDL
files, implementation functions to call and handle all defined methods, for various
programming languages. We distinguish IDL functions (i-functions) from gen-
erated functions (g-functions) where relevant. Any non-void g-function returns
a value of type ASML RESULT, an integer result indicating success (0) or failure
(non-zero). The company’s software architecture rule book states that callers
must not use individual error codes, but only OK (0) vs not-OK (non-zero),
except for logging, to prevent tight coupling between functions.

(i) Blocking Call (Figure 2a): A client may invoke an i-function f syn-
chronously as a blocking call (with g-function fblk). While awaiting the server’s
response (return value rok or rnok), the client is then blocked and can not do any
internal processing, perform calls, or process messages from its message queue.

(ii) Request/Wait Call (2b/ 2c): A client may asynchronously request (freq)
a server to start executing an i-function f . The client is then free to do other
things before explicitly waiting (fwait) for the server’s response (the second rok
or rnok). If the server has already finished executing the i-function, the middle-
ware has stored the server’s response and immediately returns this to the client
(2b). Otherwise, the client is blocked until the server finishes and its response
is provided back to the client via the middleware (2c). With request/wait calls
the client is in control of when it is ready to receive the server’s response.

(iii) Function Completion Notification (FCN) Call (2d): A client may
asynchronously request (ffcn) a server to start executing an i-function f , provid-
ing it a callback address (fcb). The client is then free to do other things. Once

222 D. Hendriks and K. Aslam

Fig. 2. Message Sequence Charts (MSCs) for all (partial) communication patterns.

A Systematic Approach for Interfacing Component-Based Software 223

the server finishes executing f , it provides its response (rok or rnok) to the mid-
dleware, which places both the callback address and the server’s response in the
client’s message queue. Once the client is idle it will process its message queue,
eventually processing the server’s response using callback g-function fcb , i.e., fcb
is called with the queued server response as argument. The client is thus notified
of the server completing the execution of function f , as the client requested.
With FCN calls the server is in control of when it provides the response.

(iv) Synchronous Handler (2e): A server may synchronously handle all block-
ing calls, request/wait calls and FCN calls for an i-function f . Once the handler
(fsync) finishes, it immediately returns its response (rok or rnok).

(v) Asynchronous Handler (2f / 2g): A server may also asynchronously han-
dle all blocking calls, request/wait calls and FCN calls for an i-function f . The
asynchronous handler (fasync) starts handling the request. In that handler (2f),
or at any later time in any other g-function (2g), it sends its response to the
client by calling an asynchronous result g-function, i.e., far (rok) or far (rnok).

A client call pattern (i – iii) and server handler pattern (iv – v) are to be
combined to form a complete pattern, with a client, middleware and a server.

(vi) Trigger (2h): A client may trigger a server (tcall), for a trigger t. The
server handles (th) the trigger without responding back to the client (rvoid). A
server may also be triggered directly by the middleware, e.g., periodically.

(vii) Event (2i – 2k): A client may subscribe (esub) to a specific event e of
one of its servers (2i), providing a callback address (ecb). The middleware stores
the subscription. A server may optionally have a subscription handler (esubh)
to be notified of subscriptions. A server may raise (eraise) an event (2j), which
leads to callback g-functions (ecb) being invoked (akin to FCN callbacks) on all
clients subscribed to that server for the specific event. Clients may at any time
unsubscribe (eun) from events (2k), again optionally notifying the server (eunh).

4.2 Mapping Communication Patterns to Inputs/Outputs

For each of the 7 (partial) communication patterns the various calls to g-
functions and their replies can be mapped to inputs and outputs for AAL. Table 1
shows this mapping. It is constructed by considering the role of the CC (and
thus of the SUL), as client and/or server, for each pattern from Fig. 2. As our
goal is to infer a component’s functional behavior, it is isolated from its environ-
ment, ‘cutting off’ (ignoring) the middleware. Only the incoming and outgoing
messages from clients and servers are considered (C and S lifelines in the MSCs).
Messages from a client to the SUL (acting as server) are inputs. Reverse commu-
nications are outputs. Conversely, messages from the SUL (acting as client) to
a server are outputs. Reverse communications are inputs. The role of the SUL,
as client or server, thus inverts whether its incoming and outgoing messages are
inputs or outputs.

For instance, in Fig. 2a the SUL can only act as client. The outgoing fblk
message to a server is then an output, and the incoming rok or rnok message
from a server is an input.

224 D. Hendriks and K. Aslam

Table 1. Communication pattern messages from Fig. 2 mapped to AAL inputs and
outputs, for the SUL acting as client or server.

Communication pattern Role of SUL Message Input/Output

(i) Blocking call Client fblk Output

rok / rnok Input

(ii) Request/wait call Client freq Output

rok / rnok Input

fwait Output

rok / rnok Input

(iii) FCN call Client ffcn Output

rok / rnok Input

fcbok / fcbnok Input

rvoid Output

(iv) Synchronous handler Server fsync Input

rok / rnok Output

(v) Asynchronous handler Server fasync Input

rvoid Output

farok / farnok Output

rvoid Input

(vi) Trigger Client tcall Output

rvoid Input

Server th Input

rvoid Output

(vii) Event Client esub Output

rok / rnok Input

ecb Input

rvoid Output

eun Output

rok / rnok Input

Server esubh Input

rok / rnok Output

eraise Output

rvoid Input

eunh Input

rok / rnok Output

4.3 The Interfacing Protocol and Its Responsibilities

When applying AAL in practice, often several preconditions must hold, e.g., when
using LearnLib [14] to learn Mealy machines, the SUL must be input-enabled.

A Systematic Approach for Interfacing Component-Based Software 225

If the CC does not satisfy such conditions, the interfacing protocol ensures that
the SUL does satisfy them. The protocol is part of the SUL’s dispatchers and
stubs, see Fig. 1. All communications between the learner and the CC go through
the protocol. Here, we discuss the protocol’s three responsibilities. The next
section explains how it satisfies them.

(a) Input-Enabled: For some learning tools/algorithms, the SUL must be
input-enabled for the learner to query every input on the SUL for every state.
This condition does not always hold, e.g., for FCN callbacks (Fig. 2d). Along with
an FCN call (ffcn) the SUL provides a callback address (fcb). In the real system,
the middleware places that callback in the client’s message queue upon receiving
the server’s reply. For AAL, the client dispatcher invokes it directly. An FCN
callback to the SUL is an input, which is thus only possible after an FCN call by
the SUL. Without the call, the callback address is unknown and it can not be
invoked on the CC. The SUL is then not input-enabled. The interfacing protocol
detects such invalid inputs, for which it can not rely on the CC. Instead, the
protocol itself replies to the learner, making the SUL as a whole input-enabled.
As only impossible inputs are rejected, the complete CC behavior can still be
learned for all valid inputs.

(b) Single Input, Single Output: Inferring Mealy machines with AAL
requires that each input produces a single output. The interfacing protocol is
designed to always alternate inputs and outputs. By matching g-function calls
and their returns, this is a natural fit. It therefore does not prevent learning the
full externally-observable behavior of CC.

The protocol is an Extended Finite State Machine (EFSM), while we infer
Mealy machines. Each protocol input and following output matches a single
Mealy machine transition.

(c) Finite Learning Result: Certain component behavior can not be cap-
tured as a finite Mealy machine, e.g., for multiple concurrent executions of an
asynchronous handler (Fig. 2g). With a the handler’s start (fasync), b its end
(rvoid), c a later successful asynchronous result call (farok), and d its end (rvoid),
this may lead to sequences ‘...ab...cd...’, ‘...abab....cdcd...’, etc., and in general
‘...(ab)n...(cd)n...’. Unlike a pushdown automaton, a Mealy machine can not
capture this in a finite manner. It would contain infinitely many paths, one for
each value of n ≥ 0. AAL would have to discover each path to infer a complete
model, which would never terminate. The interfacing protocol can restrict such
concurrent executions (n ≤ m) to ensure that AAL terminates, at the expense
of not learning the full behavior. Not only are higher concurrency variants then
absent (n > m), any differences in behavior resulting from them would also be
absent, e.g., the component’s behavior could be different for n = m+ 1 than for
any n ≤ m, but this would not be in the inferred model. However, the result-
ing models can still be valuable in practice, as our goal is automatically infer
first-order models to bootstrap a subsequent manual modeling effort.

226 D. Hendriks and K. Aslam

The interfacing protocol is a small wrapper around CC, addressing these three
responsibilities. Neither ensuring input-enabledness, nor ‘single input, single out-
put’, prevents learning the full externally-observable behavior of CC. Using inter-
action limit m = ∞, the full behavior of a CC can thus be learned, assuming
CC has a finite Mealy machine representation. Otherwise, by restricting m, a
subset of the behavior of CC (an under-approximation) can be learned. Assum-
ing an AAL algorithm is used that ensures that learned models are minimal, our
approach in no way impacts that guarantee.

4.4 Systematic Derivation of the Interfacing Protocol

The interfacing protocol provides a structured way of handling the various com-
munication patterns, ensuring that the SUL is input-enabled, provides a single
output per input, and represents a finite Mealy machine, even if the isolated CC
does not satisfy these properties. We derive such an interfacing protocol in a
systematic manner, still using the same example software architecture.

Figure 3 shows the interfacing protocol as an EFSM. The protocol starts
in state Idle as the CC is initially idle, awaiting a call. The Idle state is an
input state from the SUL’s perspective, shown in dark gray in the figure. Upon
receiving a SUL input, the g-function matching that input is called on the CC.
The protocol then transitions to the Busy state, which is an output state from
the SUL’s perspective, denoted light gray in the figure. Here the CC continues
executing the g-function. Upon its return, the protocol transitions back to the
Idle state. Alternatively, while Busy, it may communicate to one of its servers
and go to the Blocked state. There it is blocked until the call to the server
returns, going back to the Busy state to continue the still-in-progress g-function
execution. For simplicity, we do not consider calls of a component to its own
provided interface. Next, we consider all 7 communication patterns from Fig. 2,
with their associated inputs/outputs from Table 1, one at a time.

(iv) Synchronous Handler (Figure 2e): An idle SUL, acting as a server, can
synchronously handle a call from one of its clients. Upon receiving fsync for some
i-function f as an input in the Idle state the protocol invokes the corresponding
handler (g-function) on the CC. It also transitions to the Busy state, as the
CC is then busy executing. Variable v1 is updated to indicate the in-progress
handler is not a void function (update [v1 := ⊥]). When the handler returns,
depending on its return value (zero for successful execution, non-zero otherwise)
the protocol produces an output (rok for zero, rnok otherwise) and transitions
back to the Idle state.

(i) Blocking Call (Figure 2a): The CC, while it is executing (state Busy),
may execute a blocking call to one of its servers. If the Client Stub receives a
blocking call for an i-function f , it maps that to output fblk and transitions to
Blocked. A blocking call is a non-void g-function ([v2 := ⊥]). In Blocked the SUL
is blocked while waiting until it receives rok or rnok as input. It then returns from
the blocking call back to the CC, with return value 0 (for rok) or 1 (for rnok),
and transitions back to Busy.

A Systematic Approach for Interfacing Component-Based Software 227

Id
le

B
us
y

B
lo
ck
ed

Si
nk

In

Si
nk

O
ut

f s
y
n
c
[v

1
:=

⊥]
n
a
sy

n
c

f
<

m
a
sy

n
c

f
→

f a
sy

n
c
[v

1
:=

�]
[n

a
sy

n
c

f
+
+
]

n
fc
n

f
>

0
→

f c
b
o
k
/
f c

b
n
o
k
[v

1
:=

�]
[n

fc
n

f
--
]

t h
[v

1
:=

�]
e s

u
b
h
[v

1
:=

⊥]
s e

→
e c

b
[v

1
:=

�]
e u

n
h
[v

1
:=

⊥]

v 1
→

r v
o
id

¬v
1

→
r o

k
/
r n

o
k

f b
lk
[v

2
:=

⊥]
f r

eq
[v

2
:=

⊥]
f w

a
it
[v

2
:=

⊥]
n
fc
n

f
<

m
fc
n

f
→

f f
c
n
[v

2
:=

⊥]
[n

fc
n

f
+
+
]

n
a
sy

n
c

f
>

0
→

f a
r
o
k
/
f a

r
n
o
k
[v

2
:=

�]
[n

a
sy

n
c

f
--
]

t c
a
ll
[v

2
:=

�]
¬s

e
→

e s
u
b
[v

2
:=

⊥]
[s

e
:=

�]
e r

a
is
e
[v

2
:=

�]
s e

→
e u

n
[v

2
:=

⊥]
[s

e
:=

⊥]

v 2
→

r v
o
id

¬ v
2

→
r o

k
/
r n

o
k

ot
he

rw
is
e

ot
he

rw
is
e
(i
nc

l.
cr
as
h)

ot
he

rw
is
e

an
y
in
pu

t
re
je
ct
ed

f
ID

L
fu
nc

ti
on

v 1
V
ar
ia
bl
e

�
if
th
e
cu

rr
en

t/
la
st

in
-p
ro
gr
es
s
ca
ll
fo
r
st
at
e
B
us
y
re
tu
rn
s
r v

o
id

⊥
if
it

re
tu
rn
s
r o

k
or

r n
o
k

(i
-f
un

ct
io
n)

v 2
V
ar
ia
bl
e

�
if
th
e
cu

rr
en

t/
la
st

in
-p
ro
gr
es
s
ca
ll
fo
r
st
at
e
B
lo
ck
ed

re
tu
rn
s
r v

o
id

⊥
if
it

re
tu
rn
s
r o

k
or

r n
o
k

t
ID

L
tr
ig
ge
r

s e
V
ar
ia
bl
e

�
if
SU

L
is

su
bs
cr
ib
ed

to
ev
en

t
e

⊥
ot
he

rw
is
e

e
ID

L
ev
en

t
n
a
sy

n
c

f
V
ar
ia
bl
e

N
um

be
r
of

f a
sy

n
c
ca
lls

st
ill

re
qu

ir
in
g
a
m
at
ch

in
g
f a

r
o
k
or

f a
r
n
o
k

0
≤

n
a
sy

n
c

f
≤

m
a
sy

n
c

f

n
fc
n

f
V
ar
ia
bl
e

N
um

be
r
of

f f
c
n
ca
lls

st
ill

re
qu

ir
in
g
a
m
at
ch

in
g
f c

b
o
k
or

f c
b
n
o
k

0
n
fc
n

f
m

fc
n

f

F
ig
.
3
.
In

te
rf

a
ci

n
g

p
ro

to
co

l
E

F
S
M

fo
r

A
S
M

L
’s

so
ft

w
a
re

a
rc

h
it

ec
tu

re
a
n
d

co
m

m
u
n
ic

a
ti

o
n

p
a
tt

er
n
s.

228 D. Hendriks and K. Aslam

(ii) Request/Wait Call (Figures 2b / 2c): Similar to blocking calls, the CC
may perform request/wait calls (freq and fwait), going from Busy to Blocked and
back (rok or rnok).

(iii) FCN Call (Figure 2d): The CC may also invoke an FCN call (ffcn),
going from Busy to Blocked and back (rok or rnok). n

fcn
f is incremented by one

([nfcn
f ++]) to indicate the FCN callback corresponding to this FCN call has not

yet been handled. At a later time, when the SUL is Idle, it may handle the FCN
callback, i.e., fcbok in case of success or fcbnok upon failure of the FCN call. An
FCN callback is a void g-function ([v1 := �]), and nfcn

f is then decreased by one
([nfcn

f - -]). For any i-function f , the protocol restricts the number of concurrently
outstanding FCN calls (nfcn

f) to at most mfcn
f . Its callback (fcbok or fcbnok) is only

possible if there is an outstanding FCN call (guard ‘nfcn
f > 0 →’). For simplicity,

we ignore the use of FCN call timeouts.

(v) Asynchronous Handler (Figures 2f / 2g): Similar to synchronous han-
dlers, the SUL may asynchronously handle calls from its clients (fasync). Such
handlers are void g-functions ([v1 := �]). The CC may, during that handler
or at any later time that it is Busy, invoke an asynchronous result g-function
for this asynchronous handler (farok or farnok), which returns rvoid . Variable
0 ≤ nasync

f ≤ masync
f keep track of and restricts the number of concurrently

outstanding asynchronous handler calls for i-function f .

(vi) Trigger (Figure 2h): While Busy, the SUL can trigger a server (tcall),
returning void ([v2 := �]). While Idle, the SUL can handle a trigger from a
client (th), also returning void ([v1 := �]).

(vii) Event (Figures 2i – 2k): While Busy, a SUL may subscribe to an event of
a server (esub), after which it is subscribed ([se := �]). It can only do so if not yet
subscribed to that event of that server (¬se →). Similarly, it may unsubscribe
(eun) if already subscribed (se →) and is then no longer subscribed ([se :=
⊥]). While Idle and subscribed (se →), it may process event callbacks (ecb).
Reversely, acting as a server to its clients, it may execute event (un)subscription
handlers (esubh and eunh) while Idle, and raise events (eraise) while Busy. For
simplicity, we ignore the rare use of re-subscriptions.

States Idle, Busy and Blocked, and the transitions between them, support all
7 communication patterns, i.e., allow the interaction patterns modeled as MSCs
in Fig. 2. Next, we explain how the protocol satisfies its responsibilities.

(a) Input-Enabled: Some inputs are impossible in certain input states. For
instance, a th input is possible in state Idle, but not in state Blocked. Also,
fcbok is only allowed in Idle if nfcn

f > 0 holds. For all impossible inputs in
input states, the interfacing protocol transitions to a sink state, where it keeps
producing rejected outputs. That is, for invalid inputs it goes to the SinkOut
output state. There it produces output rejected , goes to input sink state SinkIn,
where it accepts any input, goes to SinkOut, produces rejected as output, etc.
This turns a non-input-enabled CC into an input-enabled SUL, while preserving
all its original externally-observable communication behavior.

A Systematic Approach for Interfacing Component-Based Software 229

(b) Single Input, Single Output: Each of the five protocol states is either
an input state (dark gray) or output state (light gray). Input states have only
outgoing transitions for inputs, and output states only for outputs. Transitions
for inputs go to output states, while output transitions lead to input states. It
intuitively matches the duality of g-function call starts and their returns. If the
CC crashes in state Busy, the protocol produces a single crash output symbol
and goes to SinkIn. This way the protocol ensures that each input is followed by
a single output, and that they alternate. It also remains input-enabled, and still
supports all communication patterns to allow inferring the full CC behavior.

(c) Finite Learning Result: To ensure that the SUL represents a finite Mealy
machine, certain interactions can be limited. For instance, masync

f limits the num-
ber of concurrently outstanding asynchronous handlers for i-function f . Starting
with masync

f = ∞, intermediate hypotheses may reveal it is necessary to restrict
masync

f . This ensures a finite SUL and learning result at the expense of poten-
tially missing some component behavior. The protocol restricts both inputs (e.g.,
fasync) and outputs (e.g., farok), redirecting them to sink states. The protocol
in Fig. 3 limits only outstanding FCN calls and asynchronous handlers. The-
oretically, similar issues could arise for other communication patterns. These
can similarly be restricted, but this has been omitted in this paper to keep the
protocol simpler, and because they rarely need to be restricted in practice. In
particular, request/wait calls are not restricted as they involve only outputs, not
inputs, and the company’s software architecture rule book, to which all its soft-
ware must adhere, already allows at most one concurrently outstanding request
per i-function f .

The complete behavior of a CC can be learned, if it is finitely representable
as a Mealy machine, by setting all interaction limits to ∞. Otherwise, by setting
interaction limits, a subset of the CC behavior can be learned.

The validity of the interfacing protocol follows from its systematic derivation,
providing correctness by construction. We do not provide a formal proof of the
correctness of our approach, leaving this as future work.

4.5 Interfacing Protocol Optimization

In the interfacing protocol (Fig. 3) the CC may, while Busy, raise an event
(eraise). It is then Blocked until the event raise g-function returns (rvoid). The
part from Fig. 3 related to raising event is shown in Fig. 4a. While in state Blocked
only one input (rvoid) is allowed, the learner will try out all inputs, only to find
out all of them get rejected, except for rvoid . This holds any time an event is
raised by the CC.

Fig. 4. Optimization for raising event in the interfacing protocol.

230 D. Hendriks and K. Aslam

This can be optimized as shown in Fig. 4b. Here the output (eraise) and sub-
sequent input (rvoid) are combined into a single transition. To preserve the single
input, single output property of the interface protocol, the eraise , rvoid transition
from output state Busy is considered an ‘extra output’. Upon executing such a
self-loop, the protocol stores the extra outputs until the next ‘real’ output. It
then prefixes the ‘real’ output with the extra outputs, in the order they were
produced. The mapper, being part of the protocol, maps each of them to a string
and combines them to form a single output. For instance, for two consecutive
Mealy transitions i/eraise and rvoid/o, with i some input and o some output,
the optimized result would be a single Mealy transition i/eraise , rvoid , o.

All void g-function outputs from Busy to Blocked allow for this optimization,
i.e., farok , farnok , tcall , and eraise .

5 Application

We apply our approach to infer the behavior of two ASML software components:
a high-level wafer exposure controller (we name it WEC), and a metrology driver
(MD). However, these case studies are not a main contribution of our work, but
rather examples to show the feasibility of applying our framework in practice,
and to discuss the practicalities that it involves. Therefore, and for reasons of
confidentiality, we do not describe them in more detail.

For each component, the AAL framework from Fig. 1 needs to be instantiated.
The following steps were involved:

1. Framework Generation: For the component of interest, its interfaces must
be identified, and their relevant code (g-functions) collected to use as CC. The
company’s proprietary generator takes IDL files with interface methods and
automatically generates g-functions. We extended it to generate the Main func-
tion, dispatchers and stubs, including the interfacing protocol and mappers.
The three I/O modules are hand-written and reusable. The SUL’s I/O module
includes its main function, which establishes a socket connection with the SUL
Manager and waits for inputs to dispatch. While any AAL tool can be used, we
opt for the mature AAL tool LearnLib [14], making our AAL process Java-based.
The SUL Manager and SUL, including the CC, are C-based.

2. Initialization: We manually add initialization code to the SUL’s new main
function, reusing code from the component’s original main function.

3. Function Parameters: WEC and MD are control components. They pass
function call parameter values along, rather than them being used for control
decisions (e.g., if statement conditions). We therefore mostly ignore function
call parameters, rather than learning register automata. Our generator generates
default values for function call arguments (0 for int, NULL for pointers, etc.). This
may be insufficient, e.g., when the CC tries to pass along a field of a NULL-valued
argument for a struct-typed parameter. It was an iterative process to manually
adapt these values, where the CC and existing test code served as inspiration.

A Systematic Approach for Interfacing Component-Based Software 231

4. Interaction Limits: Based on expert knowledge of WEC and MD, we set
both interfacing protocol interaction limits: masync

f = 1 and mfcn
f = 1. Using

this low value reduces the size of the SUL’s unknown behavior model, for better
AAL performance.

5. SUL Compilation: We adapt the component’s build scripts, excluding any
irrelevant code, e.g., its main function and serialization wrappers, and including
the new dispatchers, stubs, and I/O module, before compiling the SUL.

6. SUL Manager Compilation: We configure the SUL pool size to 100, and
compile the SUL Manager using its generated build script.

7. Learner and EO: Our generated Main Java class is by default configured
to use TTT [13] as Learner and Wp [7] as EO. To guarantee learning a complete
model, Wp requires n, the number of states of the SUL’s unknown behavior
model. As we don’t know n, we guess it, and iteratively increase the value if
needed. Caching is also enabled by default.

8. Input Alphabet: The generated Main class by default configures the com-
plete input alphabet as derived from the IDL files. It can be reduced to only
learn a part of the component’s behavior. Considering all provided (to clients)
and required (to servers) interfaces, WEC has 591 inputs. It implements 25 dis-
tinct workflows. We select five of them, of various complexities, and learn them,
including their prerequisite other workflows. For component MD, we keep the
complete alphabet with 25 inputs.

9. AAL Process Compilation: We compile the AAL process executable.

10. Perform AAL: Finally, we execute the AAL process executable to learn
models, repeating earlier steps in case of required changes, e.g., after adapting
function call arguments or protocol interaction limits.

Each experiment was executed for 24 hours. For WEC, a dedicated system
with 24 CPU cores (Intel Xeon Gold 6126) and 64 GB memory was used. For
MD, a readily-available virtualized platform with shared resources was used.

We consider the learning/testing rounds up to and including the last learning
round that produced the largest hypothesis, and omit subsequent testing that
did not find any more counterexamples. Table 2 shows for each (sub-)component
(C) the number of inputs (I), the Wp EO n value (Wp-n), the number of
Mealy machine states in the model we learned (M-n), the number of equiva-
lence queries (EQs), the number of membership queries (MQs) and membership
symbols (MSs), the number of test queries (TQs) and test symbols (TSs), both
to the cache (/C) and to the SUL (/S), and the total time in seconds (T).

WEC-1 and WEC-2 are small workflows, without prerequisites. Their largest
hypotheses are produced within a few seconds, and no new behavior was found
during the many remaining hours of AAL execution. Manual inspection of the
component code leads us to conclude they have been learned completely.

WEC-3, WEC-4 and WEC-5 have other workflows as prerequisites. Their
largest hypotheses are produced within a few hours. However, they do not accept

232 D. Hendriks and K. Aslam

Table 2. Case study metrics, per (sub-)component.

C WEC-1 WEC-2 WEC-3 WEC-4 WEC-5 MD

I 2 6 25 26 30 25

Wp-n 46 17 66 39 66 916

M-n 50 23 71 55 71 917

EQs 5 4 13 8 13 544

MQs/C 538 967 8,876 7,685 10,644 98,635

MQs/S 52 129 1,462 1,281 1,779 38,300

MSs/C 12,554 12,015 143,335 112,681 171,851 2,122,205

MSs/S 1,015 1,490 23,020 18,266 28,072 854,765

TQs/C 1.59×107 1,435 1.67×109 6.57×109 4.13×109 9.80×107

TQs/S 43 3 5,543 3,048 22,689 196,686

TSs/C 4.91×108 14,074 3.08×1010 1.06×1011 7.65×1010 2.00×109

TSs/S 1,399 36 88,398 41,046 372,376 4,262,369

T 23 5 2,171 7,569 5,870 62,604

traces that we manually constructed based on their source code. The traces
have 86, 100 and 101 inputs, respectively. Learning thus did not yet find all
their behavior. This is to be expected though, given that it is hard for black-box
testing to find the exact (combination of) prerequisite sequences to test out of all
possible test sequences. And even more so considering that we test breadth-first
by incrementally increasing the n value of the Wp EO.

For component MD in total 544 hypotheses are constructed in about
17.4 hours. The last hypothesis accepts our manually constructed trace. Accep-
tance of this trace, and no further counterexample being found for the remaining
6.6 hours, gives us some confidence that we might have found the complete behav-
ior, although we do not have any evidence that we indeed found all behavior.

The learned models can be used for various purposes [3]. Here, our goal is to
facilitate a cost-effective transition to MDE, concretely to Verum’s commercial
ASD Suite1, which is based on their patented ASD technology [4], and is used
by ASML as MDE tooling. To exemplify this, Fig. 5a shows WEC-2 (abbrevi-
ated to W) and part of its anonymized context. Figure 5b shows a part of the
anonymized learned Mealy machine of WEC-2. The sink state and its incoming
and outgoing transitions are purposely omitted. Figure 5c shows the result of
manual conversion of the Mealy machine to a partial ASD design model. The
conversion is straightforward: Mealy machine states and transitions correspond
one-on-one to states and transitions in the ASD model, where inputs become
triggers and outputs become actions. For simplicity, we ignore function param-
eters. ASD requires for each control component both an interface model and a
design model. An interface model can be automatically obtained from the AAL
result [3], and then similarly converted to an ASD interface model. From the

1 See https://verum.com/asd.

https://verum.com/asd

A Systematic Approach for Interfacing Component-Based Software 233

Fig. 5. Partial example of converting learning results to ASD, for WEC-2 (abbreviated
‘W ’). Naming scheme: W start

async is an asynchronous handler for function start of W .

234 D. Hendriks and K. Aslam

ASD models, new component code can be automatically generated using the
ASD Suite. This can then replace the existing CC. All that remains is to update
the glue code as needed, and to include the ASD runtime for compilation. If a
complete Mealy machine of the CC was learned, the newly generated code is
then a drop-in replacement, its externally-visible communication behavior being
identical to that of CC.

6 Conclusions and Future Work

In this paper, we describe a general AAL framework to learn the external com-
munication behavior of software components with a client-server architecture,
filling a practical gap when applying AAL to such components. Our framework
includes an interfacing protocol, which ensures that the SUL satisfies various
practical preconditions of AAL, even if the isolated component code does not
satisfy them. It is future work to infer pushdown automata to prevent having to
use interaction limits to ensure finite learning results.

Our main contribution is the systematic way in which we derive the protocol,
handling the different types of (a)synchronous communications. We derive, as
an example, such a protocol specifically for ASML’s software architecture. How-
ever, we rely on generic concepts, e.g., function calls and returns, requests and
replies, synchronous vs asynchronous calls, and MSCs, that apply to commu-
nication patterns of component-based software in general. We therefore expect
that our work can be used to similarly derive such protocols and set up learning
frameworks at companies with similar software architectures.

The approach ensures correct-by-construction interfacing protocols, but prov-
ing this is considered future work. We do show the feasibility of our approach by
applying it to infer the behavior of several ASML (sub-)components. We believe
that company engineers should be able to similarly apply our framework, given
only a document with detailed instructions, which is future work.

Using generators we automate most of the work to set up an AAL environ-
ment. Still, this takes up to a few hours per (sub-)component. It is especially
time-consuming to provide sensible function call arguments, to ensure that the
SUL does not crash and thus exhibits relevant behavior. It is future work to
automate this using white-box techniques, and to infer register automata for
components with argument-dependent behavior.

Furthermore, scalability remains a major challenge. Even after hundreds of
billions of test symbols, the complete behavior was not learned for some sub-
components. There are various techniques that can improve active learning per-
formance, including checkpointing, incremental equivalence queries [11], white-
box approaches [12] and incorporating available traces [19]. Integrating them
into our framework is also future work.

Still, for some (sub-)components we learned the complete behavior well
within a day. This can significantly reduce the time to obtain a model of their
behavior, compared to modeling them in a completely manual way. It is future
work to automate the conversion to ASD, and further investigate the qualitative
and quantitative advantages of our approach compared to manual modeling.

A Systematic Approach for Interfacing Component-Based Software 235

Acknowledgments. The authors would like to thank ASML for making this work
possible and supporting it, and Mladen Skelin for his contributions to this work, in
particular the implementation.

References

1. Aarts, F., Heidarian, F., Vaandrager, F.: A theory of history dependent abstrac-
tions for learning interface automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 240–255. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1 18

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Aslam, K., Cleophas, L., Schiffelers, R., van den Brand, M.: Interface protocol
inference to aid understanding legacy software components. Softw. Syst. Model.
19(6), 1519–1540 (2020). https://doi.org/10.1007/s10270-020-00809-2

4. Broadfoot, G.H., Broadfoot, P.J.: Academia and industry meet: some experiences
of formal methods in practice. In: Tenth Asia-Pacific Software Engineering Con-
ference, pp. 49–58. IEEE (2003). https://doi.org/10.1109/APSEC.2003.1254357

5. Cho, C.Y., Babić, D., Shin, E.C.R., Song, D.: Inference and analysis of formal
models of botnet command and control protocols. In: Proceedings of the 17th
ACM conference on Computer and communications security, pp. 426–439 (2010).
https://doi.org/10.1145/1866307.1866355

6. al Duhaiby, O., Mooij, A., van Wezep, H., Groote, J.F.: Pitfalls in applying model
learning to industrial legacy software. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 121–138. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03427-6 13

7. Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603
(1991). https://doi.org/10.1109/32.87284

8. Gomaa, H.: Real-time software design for embedded systems. Cambridge Univer-
sity Press, USA, 1st edn. (2016). https://doi.org/10.1017/CBO9781139644532

9. de la Higuera, C.: Grammatical inference: learning automata and grammars. Cam-
bridge University Press (2010). https://doi.org/10.1017/CBO9781139194655

10. Hooimeijer, B., Geilen, M., Groote, J.F., Hendriks, D., Schiffelers, R.: Con-
structive Model Inference: model learning for component-based software archi-
tectures. In: Proceedings of the 17th International Conference on Software Tech-
nologies (ICSOFT), pp. 146–158. SciTePress (2022). https://doi.org/10.5220/
0011145700003266

11. Howar, F.: Active learning of interface programs, Ph. D. thesis, Technische Uni-
versität Dortmund (2012). https://doi.org/10.17877/DE290R-4817

12. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

13. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

https://doi.org/10.1007/978-3-642-32940-1_18
https://doi.org/10.1007/978-3-642-32940-1_18
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/s10270-020-00809-2
https://doi.org/10.1109/APSEC.2003.1254357
https://doi.org/10.1145/1866307.1866355
https://doi.org/10.1007/978-3-030-03427-6_13
https://doi.org/10.1007/978-3-030-03427-6_13
https://doi.org/10.1109/32.87284
https://doi.org/10.1017/CBO9781139644532
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.5220/0011145700003266
https://doi.org/10.5220/0011145700003266
https://doi.org/10.17877/DE290R-4817
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26

236 D. Hendriks and K. Aslam

14. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

15. Merten, M., Isberner, M., Howar, F., Steffen, B., Margaria, T.: Automated learning
setups in automata learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS,
vol. 7609, pp. 591–607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34026-0 44

16. de Ruiter, J., Poll, E.: Protocol state fuzzing of tls implementations. In: 24th
USENIX Security Symposium (USENIX Security 15), pp. 193–206. USENIX Asso-
ciation (2015). https://doi.org/10.5555/2831143.2831156

17. Szyperski, C., Gruntz, D., Murer, S.: Component software: beyond object-oriented
programming. Pearson Education, 2nd edn. (2002)

18. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Softw. 31(3), 79–85 (2014). https://doi.org/10.1109/MS.2013.
65

19. Yang, N., et al.: Improving model inference in industry by combining active and
passive learning. In: 2019 IEEE 26th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), pp. 253–263 (2019). https://doi.org/
10.1109/SANER.2019.8668007

https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-642-34026-0_44
https://doi.org/10.1007/978-3-642-34026-0_44
https://doi.org/10.5555/2831143.2831156
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/SANER.2019.8668007
https://doi.org/10.1109/SANER.2019.8668007

	A Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool
	1 Introduction
	2 Background
	3 Active Automata Learning Framework
	4 Interfacing Protocol
	4.1 Software Architecture and Communication Patterns
	4.2 Mapping Communication Patterns to Inputs/Outputs
	4.3 The Interfacing Protocol and Its Responsibilities
	4.4 Systematic Derivation of the Interfacing Protocol
	4.5 Interfacing Protocol Optimization

	5 Application
	6 Conclusions and Future Work
	References

