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Abstract—Current software engineering practices rely on
highly heterogeneous and distributed teams working in a col-
laborative setting. Between 2013–2020, the publication output
in the field of collaborative Model-Driven Software Engineering
(MDSE) has significantly increased. However, the only systematic
mapping study available is limited to studies published until
2015. In this paper, we provide an update on that study for
the complementing 2016–2020 period, and report the latest
results, challenges, and trends. Our analysis led to selecting 29
clusters of 54 new peer-reviewed publications on collaborative
MDSE. Based on the novel developments in the field, we have
extended and improved the original classification framework,
making it applicable to recent and future research contributions
on collaborative MDSE. The insights in this paper relate to the
changing trends in the field and present new relevant information.

Index Terms—Model-driven engineering, collaborative model-
ing, systematic mapping study, systematic update

I. INTRODUCTION

Current software engineering practices rely on highly het-
erogeneous and distributed teams, required to work together
to deliver the software system correctly and efficiently. Thus,
collaboration across team members, and often across mul-
tiple teams, is needed [1]. The combination of computer-
aided collaboration, and model-driven software engineering
(MDSE) presents its own benefits and challenges [2]–[4]. In
the past decade, collaborative MDSE has become a prominent
feature of today’s software engineering practice, e.g., in agile
methodologies and low-code platforms [5]–[7].

The field of collaborative MDSE is rapidly expanding and
maturing. The only comprehensive study in the field has been
provided by Franzago et al. [8]1, encompassing the 20-year
period of 1996–2015. Considering the recent improvements
in collaborative MDSE, however, we found that a systematic
update of the study on the 5-year period of 2016–2020 will
provide valuable insights. Apart from the intensive academic
research, this period witnessed various editions of workshops
on collaborative modeling [9] [10], a thematic special issue
on the topic [4], and numerous international research and
development projects, most notably [11]–[13].

In this paper, we report the results of our systematic update.
By following the guidelines of Mendes et al. [14], we found
54 relevant new primary studies. On average, this accounts
for 10 studies per year, twice as much as the 5 studies per

1Referred as the original study in the remainder of the paper.

year measured by the original study. Although these numbers
might already hint to a need for an update, we further motivate
our work by a systematic qualitative assessment. Additionally,
we have surveyed the field for secondary studies to enhance
the classification framework of the original study. Eventually,
three secondary studies were considered, out of which we
retained [15], as it complemented the original classification
with relevant information.

This update is strongly coupled with the original study. It
takes assumptions from it, and follows its slightly adapted
methodology [16]. Accordingly, the goals of this paper are
aligned with those of the original study: to identify, classify,
and understand collaborative MDSE approaches that have
emerged since the original study, i.e., between 2016–2020. An
additional goal of this update is to enhance the classification
framework of the original study, in response to the develop-
ments in the field. Our research is not limited to tools or
technological stakeholders. Instead, we approach the research
questions from a holistic standpoint. However, we restrict
our investigation to approaches which are (i) model-driven
(or at least model-based); (ii) consider a meaningful set of
collaborating stakeholders; and (iii) provide appropriate means
of communication.

There are two kinds of information reported in this paper.
First, we reflect on the takeaways and trends of the original
study, and report any changes from the 2016–2020 period.
Second, we identify new trends based on the newly sampled
papers, and the newly introduced classification categories.

II. RELATED WORK

The only systematic review on collaborative MDSE is
the original study of this update by Franzago et al. [8].
They rigorously reviewed and analyzed 48 primary studies
collected until mid-2015. In this systematic mapping study,
they elaborated a classification framework along three main
dimensions. Model management is the dimension to manage
the life cycle of models in a collaborative setting through,
for example, repositories to persist models, modeling tools to
manipulate models, and interchange formats to share models
across stakeholders. Collaboration is the means for stakehold-
ers to collectively work on models and coordinate themselves
with, for example, versioning systems, conflict management
systems, model comparison engines, and development and
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managerial processes. Communication ensures that stakehold-
ers of each other’s work can exchange and interact with each
other (e.g., by sharing design decisions, tracking discussions,
and notifying changes). The mapping study details a taxonomy
for each dimension from which they draw various conclusions
on the topic of collaborative MDSE. In this paper, we update
the original study with numerous papers that have appeared
since then. Methodologically, we meticulously follow their
protocol, but also update the classification framework with new
characteristics that have appeared since then.

While retrieving publications for this update, we identi-
fied three secondary studies related to collaborative MDSE.
Masson et al. [15] performed a feature analysis of over 10
collaborative modeling tools. They discuss various features
already supported by existing tools and identify unavailable,
yet desirable, collaborative features. Since their study is
well-aligned with our scope, we have included the relevant
charactersitics in our classification framework. Stephan [17]
reports temporal trends of keywords in 103 collaborative
MDSE papers between 2012–2017. Although this information
is not sufficient to incorporate in our study, we confirm that
all the top keywords found appear in our data extraction
form. Ertugrul and Demirors [18] analyzed three role-based
collaborative business process modeling approaches. Their
work is specific to process modeling which is a narrower scope
than the one we are concerned with in this paper.

Many modeling tools have recently shifted to support differ-
ent forms of collaboration. Just to name a few, AToMPM [19]
provides a purely in-browser interface for multi-paradigm
modeling activities. WebGME [20] also supports web-based
collaboration where users can work on the same model thanks
to a branching scheme similar to Git. MetaEdit+ [P13] has also
released a collaborative environment that incorporates Git to
provide offline collaboration. GenMyModel [21] provides an
in-browser client to model collaboratively with various model
management utilities. OBEO Designer [22] also enables col-
laborative modeling within Eclipse with a locking mechanism.

III. ASSESSING THE NEED FOR AN UPDATE

Mendes et al. [14] report that many systematic studies are
potentially outdated; thus affecting the aggregated understand-
ing of the state-of-the-art through those systematic studies.
In order to facilitate a factual decision whether an update
of a study is required, they provide a systematic assessment
framework. In this section, we apply the framework to our
case, and report the results of the assessment.

The framework defines a three-step decision process. In
the first step, we must assess if the original study is still
of current interest by answering three specific questions. If
we can answer positively to all three questions, then we can
proceed to the second step. Here, we identify whether new
relevant methods, studies or information are available with
respect to the topic of the original study by answering two
specific questions. If at least one is answered positively, we
can proceed to the third step. There, we assess if updating the
review has an effect on the findings, conclusion or credibility

of the original study by answering two specific questions. If at
least one is answered partially positively, the original study is
deemed as a good candidate for an update. The remainder of
this section demonstrates with quantitative evidence that there
is a clear need to update the original study [8].

A. Assessing the currency of the original study

1) Does the original study still address the current ques-
tion?: Since the publication of the original study, three edi-
tions of a workshop on collaborative modeling [9] have been
organized between 2016–2018. A special issue on collabora-
tive MDSE has been published in the IEEE Software journal
in 2018 [4]. A recent article [23] firmly places collaborative
modeling as one of the future grand challenges in MDSE.
Another recent article [1] suggest that collaborative features
will retain their prominent role in modeling environments in
the future. Therefore, we confirm that collaborative MDSE is
still a current mainstream topic in the community.

2) Has the original study had good access or use?:
Mendes et al. suggest that a secondary study should be cited
at least 6 times per year to be considred for an update.
This is based on [24], where the authors report that software
engineering papers are cited on average of 6.82 times per
year (n = 71 668). At the time of writing, the original study
has accumulated 47 citations over the 2-year period since its
publication, resulting in 23.5 citations per year. This ranks the
original study in the top third of the list of studies investigated
by Mendes et al. Furthermore, the original study is currently
the highest-cited publication by the search term “collaborative
model-driven” in all major scientific databases. Therefore, we
confirm that the original study has had a good access and use.

3) Has the original study used valid methods and was
well conducted?: The original study rigorously followed the
guidelines to conduct systematic mapping studies [25], [26],
and scored above average, at 61.5%, in the quality checklist
of Petersen et al. [27]. Therefore, we confirm that the methods
of the original study are well-constructed and executed.

B. Relevant new methods, studies and other information

1) Are there any new relevant methods?: As outlined
in Section II, new studies have been published since the
publication of the original study. In particular, the work
of Masson et al. [15] has a relevant classification method
complementary to the original one. The authors provide a fea-
ture model for collaborative modeling environments, focusing
on the implementation details of such systems. The feature
model could serve as an aid for extending and updating the
classification framework of the original study.

2) Are there any new studies, or new information?: We
have evaluated the search string of the original study2 over
the time range the study has focused on (1996–2015), and
over the time range since then (2016–2020). The search string

2(collaborat* OR coordinat* OR cooperat* OR concur* OR
global) AND (MDE OR MDD OR MDA OR MDS* OR EMF OR DSL OR DSML
OR "model driven" OR "eclipse modeling framework" OR "domain
specific language" OR "domain specific modeling language")



yields 17 300 hits for the original 20-year range and nearly as
much, 16 800 hits, for the 5-year range of 2016–2020. This
is a substantial increment in annual publications by a factor
of 3.88. As this study update shows, a significant amount of
work has been dedicated to collaborative modeling following
the publication date of the original study.

C. Assessing the effect of the update

1) Will the adoption of new methods change the find-
ings/conclusions or credibility?: The adoption of the feature
model of [15] alone could improve at least the credibility
of the findings, as it provides a complementary technical
set of information to the original study. Other studies might
be encountered during the search phase that could further
influence the findings and conclusions.

2) Will the inclusion of new studies/information/data
change the findings/conclusions or credibility?: Multiple pa-
pers on advanced collaborative techniques have been pub-
lished since the publication of the original study. Typical
topics include property-based locking [28], semantic inconsis-
tency management [29], and other advanced techniques [P01].
Therefore, we are confident that the inclusion of new studies
will most probably update and extend the classification frame-
work drawn in the original study.

Given the positive answers above, we deem it justified and
required to update the original study. As a rule of thumb,
Mendes et al. [14] suggest that the maturation time between
the publication of the original study and its update should be
longer than two years. In our case, this time is 5 years.

IV. STUDY DESIGN

Our study was carried out in accordance with well-
established guidelines in the realm of empirical software
engineering [26], systematic mapping studies [27], and updates
of systematic literature studies [30], [31]. For the sake of
consistency, we keep the design of this study aligned with the
one of the original study as much as possible (For example,
by using the same research questions, same selection criteria,
etc.). In the following, we give an overview of the design
of this study, emphasizing its variation points with respect
to the original one. Further details about the common parts
can be found in the original study. A complete replication
package is publicly available [32] for independent replication
and verification of our study. The replication package includes
the raw data of our search and selection phase, the list of
selected primary studies, the raw data extracted from each
primary study, the R scripts for data exploration and analysis,
and the list of changes in the classification framework.

A. Goal and Research questions

We formulate the goal of this study using the Goal-
Question-Metric perspectives [33]. Accordingly, the goal of
this study is to: identify, classify, and understand issues
related to the characteristics, challenges, and publication trends
of collaborative MDSE approaches, in the period between
01.01.2016–31.12.2020, from a researcher’s point of view.

We use the same research questions as the original study.
RQ1: What are the characteristics of collaborative MDSE
approaches?
RQ2: What are the challenges and shortcomings of existing
collaborative MDSE approaches?
RQ3: What are the publication trends that can be deduced
from the scientific publications about collaborative MDSE
approaches over time?

By answering these research questions we provide an up-
to-date map that classifies recent approaches for collaborative
MDSE with respect to: (i) their model management, collabora-
tion, and communication characteristics; (ii) their limitations,
faced challenges, and future work; and (iii) publication trends
such as publication year, and targeted scientific venues. Our
map allows current and prospective researchers to understand
the evolution of this research field in the past years, thus
allowing the scientific community to better reason about
research interests, and unexplored research directions. Figure 1
outlines the process and main phases of this study.

B. Search and selection

The success of a systematic study strongly depends on the
retrieval of the relevant primary studies that are representative
enough of the topic being considered [25]. As recommended
in the guidelines for updating a systematic literature study by
Wohlin et al. [30], we have based our search strategy entirely
on forward snowballing, starting from (i) the set of primary
studies of the original study, and (ii) the original study itself.
Although the authors suggest one iteration is sufficient for
mapping the increment of the state of the art, we have opted for
a fully recursive forward snowballing to improve the quality
of the search. In accordance with [30], we relied on Google
Scholar as the source of retrieval. Google Scholar is considered
a comprehensive academic search engine [34], and adequate
for updates of systematic literature studies [30].

As shown in Table I, in the first iteration of snowballing, we
obtained a total of 631 potentially relevant studies. For each
study, we have applied a set of selection criteria. If a paper
was included, snowballing was applied iteratively on it. The
procedure eventually concluded after four iterations. By this
phase, we analyzed a total of 886 potentially relevant studies.
We also found three papers from 2015 that were missing from
the original study, due to their late publication date. These
papers are considered in the analysis of long term publication
trends (Section VII).

TABLE I: Statistics of the snowballing rounds

Snowballing All Excluded Included

1st iteration 631 592 39 (6.18%)
2nd iteration 228 214 14 (6.14%)
3rd iteration 26 25 1 (3.70%)
4th iteration 1 1 0
Total 886 832 54 (6.09%)

The selection criteria are identical to the ones of the original
study. We included studies that propose an MDSE approach
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Fig. 1: The process of updating the systematic mapping study.

for supporting the collaborative work of multiple stakeholders.
The study has to cover the three complementary dimensions
of model management, collaboration, and communication.
The primary artifacts within the collaboration process must
be models. The studies should provide either validation or
evaluation. We only considered studies written in English,
available in full-text and subject to peer-review. We excluded
studies that discuss only business processes and collaboration
practices, without proposing a specific method or technique.
Secondary studies and other forms (e.g., tutorials, extended
abstracts, posters, editorials) were also excluded.

We used ReLiS [35] to perform the iterative screening of
the studies among three researchers. Each of the 886 studies
were screened by two researchers independently. For each
potentially relevant study, we applied an adaptive reading
depth [27], [36]. The resulting 0.86 Cohen’s kappa indicates a
nearly perfect agreement among the researchers. This makes
us reasonably confident about the objectivity of our selection
phase. Among the 886 studies, only 69 conflicts (7.7%)
have emerged. We resolved each conflict by including the
third researcher, and engaging in a hands-on discussion and
collective decision making exercise. We have anticipated the
first iteration having the most impact on the eventual set of
included papers, and therefore, at the end of the first iteration,
a fourth researcher validated all included studies, and 20% of
the excluded ones. Eventually, we included 54 primary studies.

Consistent with the original study, we clustered the included
studies in order to group the papers pertaining to the same
approach. (For example, a conference paper extended into a
journal version.) In accordance with [26], usually it was the
most recent journal version of each cluster that was selected
to represent the cluster during the investigation of RQ1 and
RQ2. In the analysis of RQ3 (publication trends), however,
we used each study separately. In the end, we grouped the 54
primary studies into a total of 29 clusters. For independent
verification, the raw data related to each phase of our search
and selection process is available in the replication package.

C. Data extraction

The goal of this phase is to extract data from each primary
study to properly answer our research questions. Following the
guidelines [14], we built on the data extraction procedure from

the protocol of the original study. Specifically, we started from
the same classification framework of the original study. Then,
in order to accommodate the recent developments in collabora-
tive MDSE, we updated the classification framework based on
the secondary studies we have identified during snowballing.
The only relevant secondary study was the feature model of
collaborative modeling tools by Masson et al. [15]. Eventually,
we included 11 new categories (one in the model management
dimension, 9 in the collaboration dimension, and one in the
communication dimension), and updated 7 categories of the
original study by extending and aligning their parameters with
the ones defined in [15]. Three researchers extracted the data
from primary studies according to the updated classification
framework; and the data from primary studies of the origi-
nal study for newly defined categories. A fourth researcher
validated the extracted data and resolved any conflicts. For
independent verification, the complete classification frame-
work and the extracted data are available in the replication
package of this study. The resulting classification framework
is presented in Sections V, VI, and VII.

D. Data synthesis

In this phase, we extracted and reported the main findings
emerging from the classification framework. We performed a
combination of content analysis and narrative synthesis [25].
Content analysis relies on the quantitative assessment of the
extracted data (e.g., the frequency of web-based vs. desktop-
based modeling editors), while narrative synthesis refers to
the systematic method where a textual narrative summary is
adopted to explain the quantitative information emerging from
the content analysis and identifying emerging patterns and
trends [25], [37], [38]. All authors collectively carried out this
phase via a series of dedicated group sessions. We grouped the
results of our data synthesis according to the research ques-
tions. These are reported in the following section. Furthermore,
similarly to the original study, we used contingency tables to
find new orthogonal insights which span multiple categories.
The orthogonal findings are reported in Section VIII.

V. CHARACTERISTICS (RQ1)

In this section, we report the results of our study, with
respect to the three dimensions of collaborative MDSE: model
management, communication, and collaboration.



TABLE II: Support for Model Management
Supported modeling artifacts
Value Original (2003–2015) Update (2016–2020) ∆

Model 48 (100%) 29 (100%) →→
Metamodel 4 (8%) 9 (31%) ↑↑
Meta-metamodel - 1 (3%) ↗↗
Language independence
Independent 21 (43%) 24 (82%) ↑↑
Specific 27 (56%) 5 (17%) ↓↓
Validation
Supported 15 (31%) 15 (51%) ↑↑
Editor type
Graphical 38 (79%) 18 (62%) ↓↓
Textual 5 (10%) 6 (20%) ↑↑
Tabular 2 (4%) 5 (17%) ↑↑
Tree-based 14 (29%) 4 (13%) ↓↓
Sketch-based 7 (14%) 1 (3%) ↓↓
External 6 (12%) 1 (3%) ↓↓
Modeling framework – New category.
Custom 40 (83%) 21 (72%) ↓↓
EMF 8 (16%) 8 (27%) ↑↑
Client type
Desktop 31 (64%) 15 (51%) ↓↓
Web 18 (37%) 14 (48%) ↑↑
Mobile - 4 (13%) ↑↑
Multi-view scenarios – New category.
Multi-user single-view 38 (79%) 19 (65%) ↓↓
Multi-view single-model 7 (14%) 5 (17%) ↗↗
Multi-view multi-model 3 (6%) 5 (17%) ↑↑
Single-view multi-model - 1 (3%) ↗↗
Multi-View support
Synthetic 6 (12%) 5 (17%) ↗↗
Projective 8 (16%) 5 (17%) ↗↗

↑↑ Increase ↗↗ Slight increase →→ No change ↘↘ Slight decrease ↓↓ Decrease

Data from original study. Data from update.

A. Model management

The model management dimension is responsible for man-
aging the lifecycle of models, including their creation, manipu-
lation, and storage. Table II lists the categories of the extended
classification framework, the frequency of their values in the
original study, the frequency of their values in this update, and
an indication of the difference between the two studies. For
the new categories, we manually extracted the corresponding
data from the corpus of the original studies; for the previously
existing categories, we use the data from the original study.

The focus of collaboration in terms of the supported model-
ing artifacts has shifted in 2016–2020 towards the: metamodel
(9 occurrences) and meta-metamodel (1) level. With this shift,
collaborative techniques have become more language indepen-
dent as well. The ratio of language-independent techniques has
nearly doubled, from 43% to 82%. Validation has become a
more integral part of collaborative frameworks. More than half
of the sampled approaches support the user with some form
of validation, showing an increase from 31% to 51% since the
original study. The lack of validation can significantly hinder
collaboration, especially at higher levels of abstraction [39].
The increased support for validation, therefore, could be a re-
sult of the increased number of tools supporting collaborations
at higher meta-levels.

The most notable changes in editor types are the decrease

in use of graphical editors (from 79% to 62%), and the
increased number of textual (from 10% to 20%) and tabular
editors (from 4% to 17%). The vast majority of approaches,
more than 70%, use their own custom modeling frameworks.
For example, authors used a custom framework in [P13]
to combine multi-user modeling with any external version
control system without performing any merging or locking.
The most widely used generic modeling framework, EMF [40]
has improved its support from 16% to over 27%.

We observed relevant changes in the type of client software
for collaborative modeling. The ratio of desktop clients has
decreased (from 64% to 51%) in favor of frameworks that
provide either web (48%) or mobile client interfaces (13%).
This shift highlights how users are becoming more mobile,
and modeling is becoming less resource-intensive. For in-
stance, [P26] presents a tool that facilitates the creation and
use of graphical DSLs on mobile devices; the mobile-based
editor was applied in a case study on wind turbines control
applications development where the modeling activities were
performed on-site in a wind farm.

Regarding the multi-view scenarios in collaborative ap-
proaches, the majority, nearly two third of the approaches
operate in a multi-user single-view fashion [41], while true
multi-view scenarios are supported only by a third of the
frameworks. Nevertheless, multi-view approaches still have
become more widespread overall. While only 20% of the
approaches in the original study support multiple views, this
has increased to 34% between 2016–2020, especially due to
the strong increase in the ratio of multi-view multi-model
techniques [42]. There is no real change in the trend of the
ratio of synthetic (views built with different concrete syntaxes)
and projective (views built with same concrete syntaxes)
approaches [42] for multi-view support.

B. Collaboration

Collaboration features are responsible for enabling an effec-
tive and efficient groupwork across the involved stakeholders.
Typical means of collaboration in MDSE include versioning
systems with merging and branching support, consistency
management mechanisms and conflict resolution algorithms.

As shown in Table III, real-time collaboration ("syn-
chronous", in the original study) is becoming increasingly
popular as compared to off-line ("asynchronous", in the orig-
inal study) types of collaboration.3 This could be the result
of the increased use of web- and mobile clients, which align
well with real-time principles, such as in the case of [P05],
[P18] and [P22]. There is noticeable decrease in the ratio
of approaches that operate over strictly prescribed workflows
(from 89% to 51%). This means collaboration becoming
less sequential, and featuring less distinctively defined roles.
The three typical consistency models are still the strong,
the eventual, and strong eventual models. Strong consistency
ensures the identical state of distributed nodes, but due to its

3As we have introduced the new category of synchronicity in the Commu-
nication aspect (Section V-C), we realigned the Collaboration type category
accordingly. Labels "real-time" and "off-line" were extracted from the studies.



TABLE III: Support for Collaboration

Collaboration types – The parameters of this category have been renamed.
Value Original (2003–2015) Update (2016–2020) ∆

Real-time 28 (58%) 19 (65%) ↑↑
Off-line 24 (50%) 12 (41%) ↓↓
Prescribed workflow
Supported 43 (89%) 15 (51%) ↓↓
Consistency model – New category.
Eventual 17 (35%) 11 (37%) ↗↗
Strong 27 (56%) 10 (34%) ↓↓
Strong eventual 3 (6%) 8 (27%) ↑↑
Conflict management approach
Allow & Resolve 27 (56%) 11 (37%) ↓↓
Preventive 12 (25%) 8 (27%) ↗↗
Conflict awareness (user) – New category.
Warning 11 (22%) 21 (72%) ↑↑
Prompt action 3 (6%) 2 (6%) →→
Locking – The parameters of this category have been renamed.
No support 35 (72%) 22 (75%) ↗↗
Pessimistic 12 (25%) 5 (17%) ↓↓
Optimistic 1 (2%) 2 (6%) ↗↗
Conflict resolution type
(Semi)automated 10 (20%) 13 (44%) ↑↑
Manual 17 (35%) 8 (27%) ↓↓
Diff/merge domain – New category.
Syntactic 46 (95%) 22 (75%) ↓↓
Semantic 2 (4%) 5 (17%) ↑↑
Versioning – The parameters of this category have been renamed.
External: generic VCS 4 (8%) 4 (13%) ↑↑
Internal 9 (18%) 3 (10%) ↓↓
External: model-driven 5 (10%) 3 (10%) →→
Network architecture – The parameters of this category have been restructured.
Centralized single server 40 (83%) 19 (65%) ↓↓
Centralized multiple srvrs 3 (6%) 6 (20%) ↑↑
Mixed 3 (6%) 3 (10%) ↗↗
P2P 2 (4%) 3 (10%) ↗↗

↑↑ Increase ↗↗ Slight increase →→ No change ↘↘ Slight decrease ↓↓ Decrease

Data from original study. Data from update.

underlying mechanisms, it significantly hinders the scalability
and user experience of collaborative modeling tools [43].
Eventual consistency provides the weaker guarantee that
changes will be eventually observed across each node [44].
Strong eventual consistency combines the benefits of both
models and, consequently, it is very suitable for underpinning
collaborative applications [45]. We see a prominent decrease
in the popularity of strong consistency, changing from 56% to
34%; while the strong eventual model is gaining popularity.
Over 27% of approaches support strong eventual consistency,
a sharp increase from the previous 6%. For example, [P18]
addresses collaborative conflicts on the data level by relying
on conflict-free replicated datatypes [45].

Conflicts arise inevitably when several collaborators work in
parallel, for instance, during merging of collaborative models.
Similar to the benefits of finding problems earlier in the
software development process, adopting preventive approaches
to manage conflicts during collaboration activities saves the
effort to be spent in resolving conflicts later in the modeling
process. We see a slightly increasing trend (from 25% to
27%) for preventive conflict management approaches in the
primary studies. Most of the preventive approaches warn the

modelers beforehand (72%), when there are potential chances
of conflicts. However, managing those conflicts is left up to the
users. Only [P14], [P29] take a prompt action and eliminate
the chances for conflict among the modeling artifacts. Locking
mechanisms also prevent the conflicts during collaboration,
where pessimistic locking allows only a single modeler to
work on (part of) a model at once and optimistic locking
gives modelers the freedom to decide for proceeding with an
update at the time of commit [46]. A small number of primary
studies supported locking mechanism, with pessimistic ap-
proaches (17%) superseding the optimistic one (6%). Though
pessimistic approaches eliminate the chances of conflicts
completely, optimistic approaches can be a better choice for
maintaining efficiency of overall modeling process. The only
change we observed since the original study, is the strong
decrease in the reliance on pessimistic locks, with a change
from 25% to 17%. The overall trend shows that locking-based
collaborative techniques are getting less popular. Finally, if
the conflicts are allowed, the modeling frameworks need to
provide support means to resolve these conflicts. Compared
to the original study, a good number of primary studies
provide (semi-) automated support for resolution of conflicts,
with an increase from 20% to 44%. Conflict resolution, and
specifically, diff/merge, is mainly addressed on the syntactic
level (75%). The support for semantic techniques, however,
has increased from 4% to 17%. Especially in approaches
emphasizing collaboration across disparate domains, semantic
techniques (semantic conflict detection, resolution, diff/merge)
are crucial. Examples include [P20] and [P24], [P25].

External generic version control systems, and especially
Git, are the most common among the approaches providing
versioning support. Approaches such as MetaEdit+ [P13] and
MONDO [P06] directly address well-known industrial require-
ments by this choice. Internal versioning lost popularity, and
their support has decreased from 18% to 10%. WebGME [P14]
and Collaboro [P10] are examples of such approaches.

The ratio of centralized network architectures has slightly
decreased. The detailed view of the centralized cases shows
that it is the single-server model (e.g., [41], [P29]) that experi-
enced a strong decrease, from 83% to 65%; while the support
for centralization by multiple servers (e.g., [P06], [P19], [P26])
increased from 6% to 20%. A slight increase in P2P and
mixed (P2P with centralization) architectures can be observed.
Such distributed architectures require more intricate data-
level consistency considerations, as demonstrated in [P18] (by
conflict-free replicated datatypes), and [P08] (by blockchains).

C. Communication

Communication features are responsible for allowing a
semantically rich exchange among the involved stakeholders,
to augment the information carried by the models they collab-
orate over. Typical means of communication are chats, wikis,
model annotations, comments, change proposals, and forums.

As shown in Table IV, there is a significant shift from
synchronous to asynchronous communication support. Asyn-
chronous communication has increased from to 33% to 72%,



TABLE IV: Support for Communication
Communication type – New category.
Value Original (2003–2015) Update (2016–2020) ∆

Asynchronous 16 (33%) 21 (72%) ↑↑
Synchronous 20 (41%) 8 (27%) ↓↓
Built-in communication means (with at least 3 occurrences)
Chat 18 (37%) 8 (27%) ↓↓
Comments 8 (16%) 5 (17%) →→
Call-for-attention 1 (2%) 5 (17%) ↑↑
Annotations 13 (27%) 3 (10%) ↓↓
Other 8 (16%) 8 (27%) ↑↑
Stakeholder types
Technical 47 (97%) 28 (96%) ↘↘
Non-technical 7 (14%) 11 (37%) ↑↑
Workspace awareness score
High 11 (22%) 11 (37%) ↑↑
Medium 8 (16%) 5 (17%) →→
Low 29 (60%) 13 (44%) ↓↓

↑↑ Increase ↗↗ Slight increase →→ No change ↘↘ Slight decrease ↓↓ Decrease

Data from original study. Data from update.

as compared to the original study, while synchronous com-
munication, has gotten less supported, strongly decreasing
from 41% to 27%. This trend is somewhat counter-intuitive,
considering the increased support for real-time collaboration
and its good fit for synchronous communication.

The categories of Client type, Collaboration type and
Communication type of the respective dimensions of Model
management, Collaboration and Communication, are strongly
related. Synchronous communication is always supported in
real-time collaboration; and appeared more relevant for web-
and mobile clients in our primary studies. Only [P16], [P21]
provided synchronous communication for desktop clients.

Our primary studies include a variety of both built-in
and external communications tools. Built-in communication is
integrated into the collaborative MDSE approach [8]: chat,
comments, call-for-attention and annotations were used more
frequently (Table IV). External communication is only pre-
scribed by the collaborative MDSE approach: e-mails and
face-to-face discussions were usually preferred for external
communication. We observe that, despite being of cardinal
importance, the use of external communication tools is either
not discussed or only mentioned very implicitly. For instance,
[P27] states that the moderator invites the collaborators but
does not mention how this invitation is sent. Similarly [P24]
does not explain how the document is forwarded (and notified)
to next reviewer during sequential collaboration.

Collaboration support for non-technical stakeholders has
improved. This might be an indication that there is an in-
creasing trend of having tight collaborations between technical
(e.g., engineers and developers) and non-technical stakeholders
(e.g., business analyst, domain expert). Most approaches are
dedicated to specific stakeholders, typically developers, de-
signers, modelers, and business stakeholders. We did not find
approaches designed for non-technical stakeholders only; this
is in line with the scope of the study, as collaborative MDSE
for performing software engineering activities, requires some
level of technical proficiency. Interestingly, [P16] included a
chatbot as a stakeholder, showing the integration of automated

TABLE V: Recurring limitations
Cluster Original (2003–2015) Update (2016–2020) ∆

1. Model management 11 27 ↑↑
2. Evaluation 0 25 ↑↑
3. Collaboration 30 23 ↓↓
4. NFP 13 11 ↘↘
5. Tool improvement 4 5 ↗↗
6. Communication 6 3 ↘↘
Total 63 97 ↑↑

↑↑ Increase ↗↗ Slight increase →→ No change ↘↘ Slight decrease ↓↓ Decrease

Data from original study. Data from update.

conversation in collaborative modeling activities.
The original study suggested further research to enhance the

support for updating stakeholders about each others’ actions
in a shared workspace, that is, to increase the workspace
awareness among stakeholders. It is encouraging to report that
we observed an increase in the proportion of studies with a
high awareness level, which shows that researchers have taken
up this line of research. Especially version control system
based mechanisms (e.g., in [P03] and [P06]), and real-time
model updates (e.g., in [P22], [P28]) are common.

VI. CHALLENGES AND SHORTCOMINGS (RQ2)

In this section, we report the results of our update regarding
RQ2, i.e., the challenges and shortcomings of collaborative
MDSE approaches researchers are facing and have either
identified them as actual limitations or suggested addressing
the shortcoming as a future work. For each primary study,
we have collected the limitations and future works by a
thorough analysis of the full text, and applied a card sorting
technique [47] to cluster this information.

We have extracted a total number of 97 unique shortcomings
from the 29 studies, an average of 3.34 per study. This number
is nearly three times as much as the average number of
shortcomings identified in the original study (63 limitations
in 48 papers, 1.31 average). Plausible explanations to this
phenomenon can be the overall better quality of publications in
the update (studies appropriately detailing the shortcomings of
the approach they describe); or the improved overall maturity
of the field (improving publication standards and practices).

Five clusters have emerged from the card sorting, four of
them consisting of at least 11 studies, as shown in Table V.
Three clusters are identical to the dimensions of collaborative
MDSE: model management (with 27 unique limitations identi-
fied), collaboration (23), and communication (3); one cluster is
related to non-functional properties (11); and one cluster is re-
lated to the lack or extensiveness of evaluation (25). The orig-
inal study identifies the first four clusters. Evaluation-related
shortcomings, however, are completely new, and emerged as
the second most frequently encountered type.

Model management and collaboration are the most fre-
quently encountered shortcomings related to the three dimen-
sions of collaborative MDSE. The third dimension, communi-
cation draws significantly less attention, and shows a decreas-
ing trend. Given the takeaways of Section V-C, we find it likely
that communication support, as a dimension of collaborative
MDSE, does not draw enough attention in general. Only [P10],



[P16], and [P24] report communication-related shortcomings.
Within model management, the low number of supported
languages (e.g., [P10]), and their expressiveness (e.g., [P23]) is
the leading limitation. The lack or restricted support for meta-
modeling and multi-view modeling is the second most frequent
limitation, e.g., in [P08] and [P28]. As discussed in Section V,
the shift towards higher meta-levels has been noticeable during
the past five years and, as such, seeing the lack of meta-level
support as a limitation might be justified.

In terms of evaluation, collaborative approaches have a
systemic issue with, in some cases, the complete lack of proper
evaluation. It is important to note, that these are self-declared
limitations by the authors of primary studies. Typical examples
include: evaluation on synthetic or academic examples (e.g.,
[P05], [P29]), and the size of the case being considered not
representative (e.g., [P27]). Another recurring theme is the
desire to test the prototype in more realistic settings, often
labeled as “industrial” (e.g., [P14], [P15]) or “real” [P28].

Out of the limitations related to collaboration, conflict
detection and automation of collaboration are the most relevant
clusters. Some approaches completely ignore conflict detection
and plan it as future work [P01]. More advanced approaches,
such as [P07], aim to extend their capabilities with AI-
based and semantic conflict detection techniques. As discussed
in Section V, semantic techniques are rarely encountered, and
thus, this direction allows significant room to grow.

Non-functional properties are a prominent cluster as well.
Scalability has been identified as the leading non-functional
limitation or desired future work (e.g., [P05], [P11], [P23]).
The focus on scalability as a limitation seems to be justified
in the case of collaborative tools, potentially supporting the
work of distributed, large-scale teams.

The remaining limitations are related to tool development
and integration tasks (e.g., [P09], [P23]); and approach-
specific concerns, such as supporting crowd modeling in [P26],
and supporting abbreviations in the NLP technique of [P22].

VII. PUBLICATION TRENDS (RQ3)

In this section, we report the results of our update regarding
RQ3: the publication trends in the domain of collaborative
MDSE. For the sake of completeness, we analyze the included
publications on an individual basis, rather than in a clustered
way. For each primary study we extracted the publication year
and type. The results are shown in Figure 2.

During the period of 2016–2020, we have sampled a total
of 51 publications. Additionally, for the year 2015, we have
sampled 3 publications which could not be included in the
original study due to their later publication date. In sum, 2015
has produced 12 publications. This shows a steady publication
trend with the average number of 10 publications between
2016–2020. This average is aligned with the previous 5-year
period (2011–2015), which produced an average of 9 papers
per year. The original study identifies 2003 as the point when
the publication trends have started to increase significantly. In
comparison with the past five years, the period between 2003–
2015 produced an average of 8.15 papers per year. Because
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Fig. 2: Publication trends between 2003–2020 with the papers
of the current study highlighted.

of the current update, we were able to identify a significant4

increase in publication output starting from 2013. This trend
can be explained by two components: (i) the appearance of
novel, web-based modeling tools that inherently embraced
collaborative modeling and remained relevant through multiple
years, such as AToMPM [19] and Flexisketch [48] in 2013, and
WebGME in 2014 [20]; and (ii) the appearance of collabora-
tive frameworks and platforms with multiple applications, such
as the Yjs/Syncmeta [49] framework in 2015, the MONDO
platform [50] in 2016, and the SOCIO [51] framework in 2017.

These figures suggest that the field is relatively steady, with
a regular influx of new techniques and approaches. Apart from
2012, which has seen only 2 publications, there were at least
6 papers produced annually in the past 15 years.

TABLE VI: Venues with more than one publication

Venue Publications Ratio

MODELS 9 17%
SOSYM, STAF 3 each 11%
ASE, IEEE Software, 2 each 18%ER, MODELSWARD, WET-ICE
Others 29 54%

The ratio of journal and conference papers has increased
from 79% in 2011–2015 to 86% in 2016–2020, suggesting
the improved maturity of the field. Relevant change can be
observed in the venues of publications. Between 2003–2015,
the distribution of papers across venues was relatively even,
as 8 conferences and workshops have contributed 3–5 papers.
The period of 2016–2020 (Table VI) is less even, and we see
three venues attracting researchers of the field. 9 papers (17%)
were published at the International Conference on Model
Driven Engineering Languages and Systems – MODELS (6
conference and 3 workshop papers); the journal on Software &
Systems Modeling – SOSYM, and the Software Technologies:

4Means until 2012 and from 2013: 6.8 and 11.125, respectively. We used
the independent 2-group Mann-Whitney U Test of unequal sample sizes due
to the non-parametric nature of the data (α = 0.05, p = 0.014).



Applications and Foundations – STAF conference contributed
3 papers each.

VIII. ORTHOGONAL FINDINGS

We have further analyzed the extracted data to find relevant
phenomena orthogonal to the vertical analysis, emerging be-
tween specific combinations of concepts in the classification
framework. By evaluating the orthogonal findings of the origi-
nal study with the 2016–2020 data, we have found that each of
them are still valid. The reader is referred to the original study
(Section 10, pp 22–23) for further information. Therefore, in
this section, we only focus on our findings from the 2016–2020
period uncovered by the updated classification framework.

1) Orthogonal findings about Real-time collaboration:
Real-time collaboration is naturally coupled with synchronous
communication. This has been demonstrated by the support
for real-time collaboration in synchronous means of commu-
nication being 100%, but only 52% in asynchronous ones. In
off-line approaches, synchronous and asynchronous means are
supported evenly. Real-time communication approaches score
higher in workspace awareness. 68% of real-time approaches
earned a Medium or High score in this aspect; while this
number is 25% in off-line approaches. As a potential lim-
itation, real-time collaboration is frequently supported by a
strong notion of model consistency (42%). This is somewhat
unexpected as strong eventual (32%) and eventual (26%)
consistency models fit the real-time paradigm better [44].

2) Orthogonal findings about Mobile clients: While mobile
clients are naturally restricted in their resources and physical
dimensions, they evidently align well with supporting non-
technical stakeholders in a collaborative modeling endeavor.
We have observed each approach with a mobile client supports
both technical technical and non-technical users. The support
for non-technical users is much lower in desktop-based (33%)
and browser-based (43%) approaches. Approaches with mobile
clients also tend to be more lightweight, where the real-time
interaction is important (100% support), but version control
and conflict awareness are omitted.

3) Orthogonal findings about Conflict management and
Conflict resolution: Preventive conflict management is most
frequently encountered in single-view settings (88%); only
one preventive approach was found in multi-view settings
(12%) [P24]. 88% of preventive techniques are found in
real-time settings; allow-and-resolve techniques, however, dis-
tribute across real-time and off-line settings evenly. The au-
tomation of conflict resolution is a stronger trend in single-
view settings than multi-view ones. 69% of single-view set-
tings provide some means of automation for resolving con-
flicts; while this number is 50% in multi-view settings. This
is likely because of the more intricate nature of conflicts in
multi-view settings. While conflicts in single-view settings are
purely syntactic, conflicts in multi-view settings tend to be
more semantic, and thus, harder to detect and repair.

4) Orthogonal findings about the Communication type:
There is a noticeable difference in how much different client
types support different communication types. Asynchronous

and synchronous means of communication are supported
nearly evenly in desktop clients (100% and 87% respectively).
This ratio, however substantially different in web and mobile
clients. In web-based clients, synchronous communication is
over 1.5 times more often found than asynchronous (100%
and 64% support respectively). In mobile clients this ratio
is even higher (100% and 25% support respectively). Multi-
view approaches distribute evenly across synchronous and
asynchronous communication types. Synchronous communi-
cation is typically supported by chat, comments, calls for
attention and annotations; while asynchronous communica-
tion is typically supported by proposals, reviews, annotations
and comments. While allow-and-resolve conflict management
techniques are equally frequent with both types of com-
munication, preventive conflict management techniques are
nearly twice as frequent in synchronous than in asynchronous
communication (7 and 4 respectively).

IX. DISCUSSION

In this section, we summarize the takeaways, identify future
directions to improve the quality and maturity of the field,
reflect on the methodology, and discuss the threats to validity.

A. Key takeaways and recommendations

We observed a strong imbalance among the three dimen-
sions of collaborative MDSE, with communication being
severely overlooked, both in terms of supported communi-
cation techniques and in terms of planned future work. Better
integrated means of communication, preferably of the syn-
chronous type, are required to seamlessly augment the mod-
eling process with the ability to interact in natural language.
We recommend treating the current lack of communication
facilities with a special emphasis in the next generation of
collaborative modeling tools. A case for model-augmented
chat facilities has been made in the context of chatbots [P22].
We foresee similar mechanisms appearing in human-human in-
teractions. We suggest researching the possibilities of making
model elements first-class citizens in chats, wikis, and similar
settings, possibly integrated with natural language processing
to further elevate the quality of human-computer interaction.

Relaxed consistency models have become more promi-
nent. Especially eventual and strong eventual models have
gained traction. We welcome this trend as these models
are especially suitable for developing modeling tools with
an elevated user experience. Approaches, such as blended
modeling [52], relaxed design, and prototyping, demand more
freedom in temporarily deviating from well-formedness, cor-
rectness and consistency, and thus, rely on proper inconsis-
tency tolerance mechanisms. Model consistency has become
a first-class concept at the level of physical data too, in the
form of conflict-free replicated data types (CRDT), motivated
by use-cases of real-time collaboration. Such approaches align
well with cross-domain settings where common modeling
concepts cannot be assumed, and thus, physical data types
might be the prime candidates to carry consistency information
or prevent conflicts by design. We suggest the research on



such relaxed consistency models to continue. Furthermore,
we see opportunities in developing advanced consistency
models explicitly targeting heterogeneous modeling settings
where common abstract syntaxes and metamodels cannot be
assumed, and semantic reasoning might be required [29].

Mobilization of modeling is trending, as the ratio of mobile
and browser clients has been increasing. This new generation
of modeling tools, however, still mainly relies on strong con-
sistency models, e.g., AToMPM [P05] and Collaboro [P10].
On a related note, real-time collaboration is becoming
increasingly popular, and it is currently the preferred option
over off-line techniques. The split in the support between
real-time and off-line collaboration has increased from 8.33%
to nearly 25%. We recommend tools builders to incorporate
state-of-the-art consistency models (e.g., strong eventual con-
sistency [45]) and inconsistency management techniques, as
this choice has a profound impact on the eventual usability
and performance of collaborative modeling tools.

The lack of systematic evaluation frameworks poses
a serious issue, as it hinders the applicability of academic
results. This is a glaring need to be addressed, especially
considering that the maturity of the field now attracts tool
builders outside of academia [11]–[13]. Systematic evaluation
frameworks will pave the road for conducting (replicable and
independently verifiable) empirical studies on collaborative
modeling techniques, algorithms, heuristics, and tools, thus
making this research field scientifically solid and robust. In
the interim, we urge the community to evaluate collaborative
MDSE tools in a hands-on fashion, e.g., via workshops and
tool challenges, such as the HoWCoM workshop at this year’s
MODELS conference [10].

On a positive note, the maturity of the field of collaborative
MDSE has improved, demonstrated by steady publication
trends and improved quality of publications. With 51 studies
published in the last five years, the amount of papers per
year has doubled since the original study. The ratio of journal
papers has improved, and focused workshops [9], [10] have
appeared. We recommend maintaining these good practices.
We suggest coordination and collaboration with adjacent com-
munities, such as Human-Computer Interaction, and Human
Factors in Modeling [53], e.g. by inviting guest editors to
special editions of journals, and inviting keynote speakers to
scientific events from these communities.

B. Methodological reflections

Results indicate this update was needed. However, at the
time of deciding to carry out this study, we could only
rely on the assessment framework discussed in Section III.
In retrospect, we find this framework appropriate, and well-
designed to aid such decisions. Carrying out a fully recursive
forward snowballing, instead of just one iteration suggested
by [14], turned out to be a good decision, as 26% of eventually
included papers were identified in the second iteration, and
additional 2% were identified in the third. This ratio is likely
to increase with the frequency of research output of the field
(the faster studies are produced, the more studies will appear in

later iterations of the snowballing), and with sufficiently long
delays between the original study and the update. Therefore,
we suggest following a fully recursive approach for future
systematic updates in disciplines with a research output of
high frequency, such as the software engineering.

C. Threats to validity
We conducted the research reported in this paper based on

the carefully designed protocol of the original study [16]. Our
work has achieved a 54.5% result in the quality checklist
defined by Petersen et al. for systematic studies [27]. This
quality score is significantly better than the median and abso-
lute maximum scores (33% and 48%, respectively) reported
by [27]. The most important threat to the external validity is
the search method that was limited to a forward snowballing,
as suggested by [14]. In order to mitigate this threat, we have
carried out a fully recursive forward snowballing. In terms of
internal validity, the most important threat was introduced in
our preliminary assessment of the need for an update. When
assessing the volume of potentially relevant new literature
(Section III-B), we mitigated the threat by measuring the ratio
of volumes between the target period and baseline period
in a uniform way: by running the same search string on
Google Scholar for both periods. A slight threat to validity
remained due to the false positive inflation problem of Google
Scholar [14]; but eventually, this did not influence the results.
A slight threat to the conclusion validity was introduced
in Section VII, when carrying out a significance test over
relatively small samples of annual research output. We have
validated the plausibility of the conclusion by identifying the
underlying trends in technical contributions.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the results of our systematic
update on the mapping study by Franzago et al. [8] on
collaborative MDSE in the period of 2016–2020. Starting
from over 880 studies, we have selected 54 primary and one
secondary studies through a rigorous process. We extended the
classification framework of the original study based on the
newly identified literature, and extracted insightful informa-
tion. We have identified multiple interesting trends, and based
on these, we have outlined the important research directions
of the field. As a next step, we will conduct the non-academic
counterpart of this study, focusing on the state of the practice
and practitioners’ needs so as to identify relevant gaps and
opportunities between academia and industry. We suggest a fo-
cused work on the communication dimension of collaborative
MDSE, which proved to be by far the most underdeveloped
and overlooked dimension of the three. Finally, we suggest
revisiting this study again in five years, and assessing the need
for another update, based on our adapted protocol.
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